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Recap: MDPs

§ Markov decision processes:
§ States S
§ Actions A
§ Transitions P(s’|s,a) (or T(s,a,s’))
§ Rewards R(s,a,s’) (and discount g)
§ Start state s0

§ Quantities:
§ Policy = map of states to actions
§ Utility = sum of discounted rewards
§ Values = expected future utility from a state (max node)
§ Q-Values = expected future utility from a q-state (chance node)
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Optimal Quantities

§ The value (utility) of a state s:
V*(s) = expected utility starting in s and 

acting optimally

§ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out 

having taken action a from state s and 
(thereafter) acting optimally

§ The optimal policy:
p*(s) = optimal action from state s
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[Demo:  gridworld values (L9D1)]



The Bellman Equations

How to be optimal:

Step 1: Take correct first action

Step 2: Keep being optimal



The Bellman Equations

§ Definition of “optimal utility” via expectimax
recurrence gives a simple one-step lookahead
relationship amongst optimal utility values

§ These are the Bellman equations, and they characterize 
optimal values in a way we’ll use over and over
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Policy Methods



Policy Evaluation



Fixed Policies

§ Expectimax trees max over all actions to compute the optimal values

§ If we fixed some policy p(s), then the tree would be simpler – only one action per state
§ … though the tree’s value would depend on which policy we fixed

a

s

s, a

s,a,s’
s’

p(s)

s

s, p(s)

s, p(s),s’
s’

Do the optimal action Do what p says to do



Utilities for a Fixed Policy

§ Another basic operation: compute the utility of a state s 
under a fixed (generally non-optimal) policy

§ Define the utility of a state s, under a fixed policy p:
Vp(s) = expected total discounted rewards starting in s and following p

§ Recursive relation (one-step look-ahead / Bellman equation):
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Policy Evaluation

§ How do we calculate the V’s for a fixed policy p?

§ Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

§ Efficiency: O(S2) per iteration

§ Idea 2: Without the maxes, the Bellman equations are just a linear system
§ Solve with Matlab (or your favorite linear system solver)
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Example: Policy Evaluation

Always Go Right Always Go Forward



Example: Policy Evaluation

Always Go Right Always Go Forward



Policy Extraction



Computing Actions from Values

§ Let’s imagine we have the optimal values V*(s)

§ How should we act?
§ It’s not obvious!

§ We need to do a mini-expectimax (one step)

§ This is called policy extraction, since it gets the policy implied by the values



Computing Actions from Q-Values

§ Let’s imagine we have the optimal q-values:

§ How should we act?
§ Completely trivial to decide!

§ Important lesson: actions are easier to select from q-values than values!



Policy Iteration



Problems with Value Iteration

§ Value iteration repeats the Bellman updates:

§ Problem 1: It’s slow – O(S2A) per iteration

§ Problem 2: The “arg max” at each state rarely changes

§ Problem 3: The policy often converges long before the values
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[Demo: value iteration (L9D2)]
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Policy Iteration

§ Alternative approach for optimal values:
§ Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal 

utilities!) until convergence
§ Step 2: Policy improvement: update policy using one-step look-ahead with resulting 

converged (but not optimal!) utilities as future values
§ Repeat steps until policy converges

§ This is policy iteration
§ It’s still optimal!
§ Can converge (much) faster under some conditions



Policy Iteration (PI)

§ Evaluation: For fixed current policy p, find values with policy evaluation:
§ Iterate until values converge:

§ Improvement: For fixed values, get a better policy using policy extraction
§ One-step look-ahead:



Convergence of PI

§ 1. Improvement: Does each policy improvement step produce a better policy? 

§ 2. Convergence: Does PI converge to an optimal policy? 



Comparison

§ Both value iteration and policy iteration compute the same thing (all optimal values)

§ In value iteration:
§ Every iteration updates both the values and (implicitly) the policy
§ We don’t track the policy, but taking the max over actions implicitly recomputes it

§ In policy iteration:
§ We do several passes that update utilities with fixed policy (each pass is fast because we 

consider only one action, not all of them)
§ After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
§ The new policy will be better (or we’re done)

§ Both are dynamic programs for solving MDPs



Recap: MDP Algorithms

§ So you want to….
§ Compute optimal values: use value iteration or policy iteration
§ Compute values for a particular policy: use policy evaluation
§ Turn your values into a policy: use policy extraction (one-step lookahead)

§ These all look the same!
§ They basically are – they are all variations of Bellman updates
§ They all use one-step lookahead expectimax fragments
§ They differ only in whether we plug in a fixed policy or max over actions



Planning Requires a Model!



Planning Requires a Model!



Planning vs. Learning

§ Markov decision processes:
§ States S
§ Actions A
§ Transitions T(s,a,s’) = P(s’|s,a)
§ Rewards R(s,a,s’) 
§ Discount g
§ Start state s0

How can we learn these quantities?



One-Arm Bandits



Double-Bandit MDP

§ Actions: Blue, Red
§ States: Win, Lose
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MDP Planning

§ Solving MDPs is offline planning
§ You determine all quantities through computation
§ You need to know the details of the MDP
§ You do not actually play the game!
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Let’s Play!

$2 $2 $0 $2 $2
$2 $2 $0 $0 $0



Planning With an Unknown Model

§ Rules changed!  Red’s win chance is different.
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Let’s Play!
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$2 $0 $0 $0 $0



What Just Happened?

§ That wasn’t planning, it was learning!
§ Technically, reinforcement learning
§ There was an MDP, but you couldn’t solve it with just computation
§ You needed to actually act to figure it out

§ Important ideas in machine learning that came up
§ Sampling: because of chance, you have to try things repeatedly
§ Parameter estimation: what is the most likely explanation of the data?
§ More data à better estimates


