

MAT8034: Machine Learning

Markov Decision Processes 2

Fang Kong

https://fangkongx.github.io/Teaching/MAT8034/Spring2025/index.html

Slide credits: ai.berkeley.edu

Recap: MDPs

- Markov decision processes:
 - States S
 - Actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ)
 - Start state s₀

- Quantities:
 - Policy = map of states to actions
 - Utility = sum of discounted rewards
 - Values = expected future utility from a state (max node)
 - Q-Values = expected future utility from a q-state (chance node)

Optimal Quantities

- The value (utility) of a state s:
 V*(s) = expected utility starting in s and
 - acting optimally
- The value (utility) of a q-state (s,a):

Q^{*}(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally

The optimal policy:

 $\pi^*(s)$ = optimal action from state s

The Bellman Equations

The Bellman Equations

 Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$
$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$
$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

These are the Bellman equations, and they characterize optimal values in a way we'll use over and over

Policy Methods

Policy Evaluation

Fixed Policies

- Expectimax trees max over all actions to compute the optimal values
- If we fixed some policy $\pi(s)$, then the tree would be simpler only one action per state
 - ... though the tree's value would depend on which policy we fixed

Utilities for a Fixed Policy

- Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy
- Define the utility of a state s, under a fixed policy π:
 V^π(s) = expected total discounted rewards starting in s and following π
- Recursive relation (one-step look-ahead / Bellman equation):

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

Policy Evaluation

- How do we calculate the V's for a fixed policy π ?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')$$

 $\pi(s)$ $s, \pi(s)$ $s, \pi(s), s'$ s'

- Efficiency: O(S²) per iteration
- Idea 2: Without the maxes, the Bellman equations are just a linear system
 - Solve with Matlab (or your favorite linear system solver)

Example: Policy Evaluation

Always Go Right

Always Go Forward

Example: Policy Evaluation

Always Go Right

-10.00	100.00	-10.00
-10.00	1.09 🕨	-10.00
-10.00	-7.88 🕨	-10.00
-10.00	-8.69 ▶	-10.00

Always Go Forward

-10.00	100.00	-10.00
-10.00	▲ 70.20	-10.00
-10.00	▲ 48.74	-10.00
	▲ 33.30	-10.00

Policy Extraction

Computing Actions from Values

- Let's imagine we have the optimal values V*(s)
- How should we act?
 - It's not obvious!
- We need to do a mini-expectimax (one step)

0.95 ♪	0.96)	0.98)	1.00
• 0.94		∢ 0.89	-1.00
0 .92	∢ 0.91	∢ 0.90	0.80

$$\pi^{*}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$

• This is called **policy extraction**, since it gets the policy implied by the values

Computing Actions from Q-Values

- Let's imagine we have the optimal q-values:
- How should we act?
 - Completely trivial to decide!

$$\pi^*(s) = \arg\max_a Q^*(s,a)$$

Important lesson: actions are easier to select from q-values than values!

Policy Iteration

Problems with Value Iteration

Value iteration repeats the Bellman updates:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Problem 1: It's slow – O(S²A) per iteration

- Problem 2: The "arg max" at each state rarely changes
- Problem 3: The policy often converges long before the values

00	Gridworl	d Display				
0.00	•	•	0.00			
^		^				
0.00		0.00	0.00			
^	_		^			
0.00	0.00	0.00	0.00			
VALUE	S AFTER	0 ITERA	VALUES AFTER O TTERATIONS			

0	○ ○ Gridworld Display			
	^ 0.00	▲ 0.00	0.00)	1.00
	•			
	0.00		∢ 0.00	-1.00
	•	•	•	0.00
	VALUES AFTER 1 ITERATIONS			

Gridworld Display			
• 0.00	0.00 >	0.72)	1.00
•		•	-1.00
•	•	•	0.00
VALUES AFTER 2 TTERATIONS			

k=3

0	0	Gridworl	d Display	
	0.00)	0.52 →	0.78)	1.00
	• 0.00		• 0.43	-1.00
	• 0.00	• 0.00	• 0.00	0.00
	VALUES AFTER 3 ITERATIONS			

k=4

O O Gridworld Display			
0.37 ▶	0.66)	0.83)	1.00
•		• 0.51	-1.00
•	0.00 →	• 0.31	∢ 0.00
VALUES AFTER 4 ITERATIONS			

00	C C C Gridworld Display				
	0.51 →	0.72 →	0.84 →	1.00	
	^		^		
	0.27		0.55	-1.00	
	_		^		
	0.00	0.22)	0.37	∢ 0.13	
	VALUES AFTER 5 ITERATIONS				

000	Gridworl	d Display		
0.59 →	0.73 →	0.85)	1.00	
• 0.41		• 0.57	-1.00	
• 0.21	0.31 →	• 0.43	∢ 0.19	
VALUES AFTER 6 ITERATIONS				

0 0	Gridworl	d Display	-	
0.62 ▸	0.74 ▸	0.85)	1.00	
• 0.50		• 0.57	-1.00	
• 0.34	0.36)	• 0.45	∢ 0.24	
VALUES AFTER 7 ITERATIONS				

0 0	Gridworl	d Display		
0.63)	0.74 →	0.85)	1.00	
• 0.53		• 0.57	-1.00	
• 0.42	0.39)	• 0.46	∢ 0.26	
VALUES AFTER 8 ITERATIONS				

0 0	O O Gridworld Display			
	0.64)	0.74 →	0.85)	1.00
	• 0.55		• 0.57	-1.00
	• 0.46	0.40 →	• 0.47	∢ 0.27
	VALUE	S AFTER	9 ITERA	FIONS

O O Gridworld Display			
0.64)	0.74)	0.85)	1.00
• 0.56		• 0.57	-1.00
• 0.48	∢ 0.41	• 0.47	◀ 0.27
VALUES AFTER 10 ITERATIONS			

0 0	COO Gridworld Display			
	0.64)	0.74 →	0.85)	1.00
	• 0.56		• 0.57	-1.00
	• 0.48	∢ 0.42	▲ 0.47	∢ 0.27
VALUES AFTER 11 ITERATIONS				

Gridwo		d Display	
0.64)	0.74 ▸	0.85)	1.00
• 0.57		• 0.57	-1.00
0.49	∢ 0.42	• 0.47	∢ 0.28
VALUES AFTER 12 ITERATIONS			

Gridworld Display			
0.64)	0.74 ▸	0.85)	1.00
• 0.57		• 0.57	-1.00
• 0.49	∢ 0.43	• 0.48	∢ 0.28
VALUES AFTER 100 ITERATIONS			

Policy Iteration

- Alternative approach for optimal values:
 - Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges
- This is policy iteration
 - It's still optimal!
 - Can converge (much) faster under some conditions

Policy Iteration (PI)

- Evaluation: For fixed current policy π , find values with policy evaluation:
 - Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

- Improvement: For fixed values, get a better policy using policy extraction
 - One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

Convergence of PI

- 1. Improvement: Does each policy improvement step produce a better policy?
- 2. Convergence: Does PI converge to an optimal policy?

Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)
- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don't track the policy, but taking the max over actions implicitly recomputes it
- In policy iteration:
 - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 - The new policy will be better (or we're done)
- Both are dynamic programs for solving MDPs

Recap: MDP Algorithms

So you want to....

- Compute optimal values: use value iteration or policy iteration
- Compute values for a particular policy: use policy evaluation
- Turn your values into a policy: use policy extraction (one-step lookahead)

These all look the same!

- They basically are they are all variations of Bellman updates
- They all use one-step lookahead expectimax fragments
- They differ only in whether we plug in a fixed policy or max over actions

Planning Requires a Model!

Planning Requires a Model!

Planning vs. Learning

- Markov decision processes:
 - States S
 - Actions A
 - Transitions T(s,a,s') = P(s'|s,a)
 - Rewards R(s,a,s')
 - Discount γ
 - Start state s₀

How can we learn these quantities?

One-Arm Bandits

Double-Bandit MDP

- Actions: Blue, Red
- States: Win, Lose

MDP Planning

- Solving MDPs is offline planning
 - You determine all quantities through computation
 - You need to know the details of the MDP
 - You do not actually play the game!

Let's Play!

\$2\$2\$0\$2\$2\$0\$0\$0

Planning With an Unknown Model

Rules changed! Red's win chance is different.

Let's Play!

\$0\$0\$0\$2\$0\$2\$0\$0\$0\$0

What Just Happened?

- That wasn't planning, it was learning!
 - Technically, reinforcement learning
 - There was an MDP, but you couldn't solve it with just computation
 - You needed to actually act to figure it out
- Important ideas in machine learning that came up
 - Sampling: because of chance, you have to try things repeatedly
 - Parameter estimation: what is the most likely explanation of the data?
 - More data → better estimates

